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    Loss Function: 

Loss Function

● Based off asynchronous transfer and averaging of weights to 
help each other learn

● Sensitive to noise addition: differentially private noise causes 
accuracy to rapidly decline

● Based off a fixed topology - slower data exchange and thus 
convergence

Personalized and Private Peer-to-Peer Machine Learning

Decentralized Parallel Stochastic Gradient Descent

● Implementation of DPSGD while introducing differential privacy
● Accurate for small networks and datasets
● Unscalable: fixed architecture makes it hard to scale up to 

bigger networks (Convolutional Networks such as VGG, etc.)

● Differential Privacy quantifies privacy in the 
form of a privacy budget given by (ε,δ) 
where epsilon quantizes the magnitude of 
privacy where a smaller epsilon indicates 
more privacy (due to noise), and delta is an 
“error term” that allows ε-privacy to be 
violated at a probability given by δ

●  Our method uses the recently developed 
Moments Accountant, which provides 
tighter bound on ε for a certain privacy 
level - where the level of added noise to 
satisfy (ε,δ)-DP is proportional to the 
timestep/sampling propability and inversely 
proportional to epsilon and delta  

● Our results show that the network is less 
susceptible to being affected by the 
addition of differentially private noise, when 
compared to larger networks such as the 
fixed topology given by DPSGD

● The Leader-Follower structure 
helps followers learn from 
better-performing nodes to 
improve convergence rate

● LEASGD ensures the same 
level accuracy while 
consuming less “privacy” - by 
strategically selecting specific 
nodes to interact with

● As a result, LEASGD shows 
an improvement in both the 
differential privacy and 
non-differentially private case

● The Leader-Follower structure aims to have 
higher-performing nodes interact more with 
and “teach” lower-performing nodes

● Performance of each node is determined by 
the nodes’ loss function over a constantly 
updated minibatch

● Leaders/followers are periodically replaced 
in response to the changing behaviors, and 
thus performances, of individual nodes

● LEASGD shows an improvement in both 
differentially-private and non-DP situations

● Consumes lower ε vs. DPSGD at similar 
accuracy percent levels

● Lower training loss at a specific iterations

● Networks represented by multiple 

Tensorflow tensors - transfer operation is 

represented by a weighted average 

between two tensors and broadcasting 

the results back to the tensors

● MNIST model is implemented with 

three-layer MLP, and CIFAR is 

implemented using a three-layer CNN

● Tested over 5 ,10, and 15 workers to 

simulate both small and large-scale 

collaborative learning

● Decentralized Topology has become a popularized efficient 
and faster alternative to the Centralized Topology

● Differential Privacy has been previously applied in a 
centralized setting

● Yet limited work has been done in decentralized and 
differentially private collaborative learning, and existing 
implementations are sensitive to noise and larger datasets

and

Figure 1. Left: A centralized topology involves a central server and various 
nodes that communicate with it. Middle: A decentralized topology avoids the 
central parameter server and instead relies on neighbor nodes to exchange 
gradients or weights. Right:  A LEASGD topology involves a changing, 
leader/follower based topology. L indicates leader nodes, and F indicates 
follower nodes.

Algorithm Final 
Accuracy

Total 
ϵ

LEASGD(m=5) 0.97 4.183

DPSGD(m=5) 0.97 4.505

LEASGD(m=15) 0.97 4.651

DPSGD(m=15) 0.95 4.843 MNIST 

 

 

Given a system with            workers with constant µ, weights w, 
gradient variance bound σ1, learning rate η , exploration/exploitation 
tradeoff term ρ, and α,β as elastic transfer rates, number of followers 
L, if                                                                             then we obtain 
bounds for the convergence rate of      as a function of time t:       
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● The objective function aims to minimize 
the average SGD loss function over all 
the nodes

● Gradients of each weight is added with 
a elastic factor α = ηρ, representing the 
weight averaging operation

● The gradients are then added with 
Gaussian noise with magnitude 
proportional to sigma (noise as an 
effect of differential privacy) and a 
constant C. 


